Package: Dforest 0.4.2

Dforest: Decision Forest

Provides R-implementation of Decision forest algorithm, which combines the predictions of multiple independent decision tree models for a consensus decision. In particular, Decision Forest is a novel pattern-recognition method which can be used to analyze: (1) DNA microarray data; (2) Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS) data; and (3) Structure-Activity Relation (SAR) data. In this package, three fundamental functions are provided, as (1)DF_train, (2)DF_pred, and (3)DF_CV. run Dforest() to see more instructions. Weida Tong (2003) <doi:10.1021/ci020058s>.

Authors:Leihong Wu <[email protected]>, Weida Tong

Dforest_0.4.2.tar.gz
Dforest_0.4.2.zip(r-4.5)Dforest_0.4.2.zip(r-4.4)Dforest_0.4.2.zip(r-4.3)
Dforest_0.4.2.tgz(r-4.4-any)Dforest_0.4.2.tgz(r-4.3-any)
Dforest_0.4.2.tar.gz(r-4.5-noble)Dforest_0.4.2.tar.gz(r-4.4-noble)
Dforest_0.4.2.tgz(r-4.4-emscripten)Dforest_0.4.2.tgz(r-4.3-emscripten)
Dforest.pdf |Dforest.html
Dforest/json (API)

# Install 'Dforest' in R:
install.packages('Dforest', repos = c('https://lhnctr.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • data_dili - QSAR dataset with DILI endpoint for demo

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 8 scripts 136 downloads 16 exports 29 dependencies

Last updated 7 years agofrom:729bce9030. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 02 2024
R-4.5-winOKNov 02 2024
R-4.5-linuxOKNov 02 2024
R-4.4-winOKNov 02 2024
R-4.4-macOKNov 02 2024
R-4.3-winOKNov 02 2024
R-4.3-macOKNov 02 2024

Exports:cal_MCCCon_DTDF_accDF_ConfPlotDF_ConfPlot_accuDF_CVDF_CVsummaryDF_dataFsDF_dataPreDF_easyDF_perfDF_predDF_trainDF_TrainsummaryDforestPred_DT

Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangrpartscalestibbleutf8vctrsviridisLitewithr